Virus Kloboukovy obrny a lidské polio jako enteroviry

Вирус болезни Клобоука и человеческого полиомиелита как энтеровирусы

Das Virus der Klobouk'schen Schweinelähme und der menschlichen Poliomyelitis als Enteroviren

Prof. MUDr. František PATOČKA, doc. MUDr. Vladimír KUBELKA, Bohuslav KORYCH, prom. lékař

Ústav pro lékařskou mikrobiologii a immunologii K. U. v Praze

Došlo dne 3. X. 1960

Úvod

Pokud je nám známo, přibližně před 12 lety vyšla z péra dvou veterinárních mikrobiologů, K a p l a n a a M e r a n z e, první srovnávací studie o biologických vlastnostech, patogenezi a imunogenezi virus Kloboukovy obrny a virů lidské poliomyelitidy, jakož i o chorobách jim vyvolaných (1). Tato zajímavá problematika byla od té doby opětovně sledována řadou autorů jak veterinárních, tak i humanitních. Z veterinářů se k této otázce vrátil ve své ne známé vyčerpávající práci F o r t n e r r. 1956 (2), v úvodu své sumarizující publikace ji stručně zrekapitoloval M a y r r. 1958 (3) a do velkých podrobností ji zpracoval ve svém velmi krásném článku L a r s k i r. 1954 (4). Z humanitních mikrobiologů, kteří byli i jen dílčím úsekem své práce se dotkl analogických vlastností obou virů na základě vlastní práce, nutno jmenovat především H o r s t m a n n o v u (5) v její známé práci z r. 1952 a K o p r o w s k é h o r. 1955 (6), jenž ve své klasifikační studii poliomyelitických virů přidal — zejména na základě výsledků předcházející práce — Kloboukov virus spolu s výskytnými číselně blízkostí virů lidské poliomyelitidy. Jako zajímavost chtěl bych zdůraznit, že právě tento poslední autor v pozdější (7), jinak zamířené studii, svůj dříve názor částečně odvolal, a to na základě této doby již naprosto neoprávněného názoru, podle něhož prý virus Kloboukovy choroby je příliš málo znám, než aby mohl být spolehlivěji taxonomicky zařazen. My sami jsem na výše uvedené téma předmětím v ČsAV poprvé r. 1954, na Virologickém semináři v Budapešti r. 1955 a konečně na podzim r. 1958 na semináři o obrně v Gottwaldově. Tato poslední přednáška byla publikována roku 1959 (8).

Smysl tétoho srovnávacích studií je celá jasný. Především na první pohled patrná a již dávno vycitěná analogie mezi lidskou polio, v jejíž bádání byl v posledních 12 letech učiněn tak ohromný pokrok, že vedl prakticky k vyřešení celé její problematiky, a Kloboukovou nemocí dala výzkumníkům k dispozici takovou
metodikou a takové prostředky, že se dnes výzvukm Kloboukovy nemoci blíží vyvrcholení. Za druhé znovu opětovaná snaha o taxonomii virů bude dráze nebo později úspěšně realizována a mezinárodně akceptována a virus Kloboukovy nemoci v ní nalezne své přesné umístění a označení. Byli bychom velmi šťastní, kdyby naše přednáška přispěla byt sebenepatrněji posledním cíli tak, jako postupné poznávání viru polio vedlo v posledních letech ve svých důsledcích k probíhání dosud neznámých vlastností Kloboukova virus.

Analogue a rozdíly

Uvedeme ve stručnosti známé analogické, ale i rozdílné vlastnosti obou virů bez širšího komentáře vedle sebe.

Velikost viru lidské polio je udávána podle použité metodiky (ultrafiltrace, stanovení sedimentační konstanty a konečně elektronoptiky) zhruba mezi 25 až téměř do 50 μm.

Velikost Kloboukova viru jsme určili ultrafiltrací kolem 30 μm, nověji Strohmaner a Zimmermann (9) podle sedimentační konstanty něco přes 30 μm. Lze-li věřit našim i jiným elektronoptickým snímkům, byla by dokonce větší něž 50 μm.

Tvar viru lidské obrny typu I a II je udáván jako sférický, typu III spíše ovoidní.

V purifikátech inlikovaných mích veprů jsme našli my (10) i Liebenow, Fischer a Röhren (11) sféroidní partikule, jež nebyly nalezeny v míchách normálních. Podobné útvary jsme zjistili nejnověji v sedimentaci získaných koncentrátech z tkáňových kultur.

Z toho lze uzavřít, že viry lidské polio a Kloboukovy nemoci jsou si blízké jak velikostí, tak i tvarem.

Relativně čisté purifikáty lze z infekčních mích jak při polio, tak u Kloboukovy obrny získat precipitací balastů buď bentonitem nebo protaminsulfáty. Je zde snad malý rozdíl v tom, že u Kloboukova viru pří poslední metodě nastává částečně disociace agregátů, takže něco viru přechází do sedimentu. Metodami analogickými pro lidskou polio byly získány i vysoce účinné preparáty z tkáňových kultur Kloboukova viru (precipitace aceton-methanolem za studena, extrakce trichlor-ethylenem a znova precipitace za studena).

Pro lidské polioviry je důležitou vlastností jejich téměř absolutní rezistence vůči étérů. Totéž a ve stejné míře platí pro infekční obrnu.

Lyofilizační procedury, zeměma jak byly dráze prováděny, nápadně oslabují viry lidské polio. Zjistili jsme totéž u Kloboukova viru.

O virech poliomyelitických je známo, že nejsou za použití běžných metodik schopny aglutinovat savčí krviny jakéhokoliv původu. Zkoušeli jsme hemaglutinace všech běžných savčích i kůřičích erythrocytů jak purifikáty infekčních nádorových cell povrchů, tak virem z tkáňových kultur za použití nejmemnějších popsaných metodik. Výsledk všech těchto experimentů byly zcela negativní.

O virech lidské polio je známo, že jsou vysoce stabilní při +4°C a že se velmi dobře konzervují při temperaturách mezi −20 až −70°C. Jejich aktivita se prakticky nemění při širokém rozmezí pH od 3.8 do 10. Tkáňový virus polio je ničen více než 24hodinovým působením temperatury 50°C. Alkohol je málo účinným antiseptikem na tyto viry, kvarterní amoniové báze prakticky neúčinné. Velmi
účinná jsou antiseptika oxydační. Typ II je podle Larského poměrně rychle inaktivován rivanolem.

Porovnáme-li tyto údaje s údaji o viru Kloboukově, zjistíme překvapivou analogii s tím, že tento poslední virus se zdá ještě rezistentnější. Doba termické inaktivace částečně purifikovaného virus z měši suspenze je 20 minut při 65°C. V našich experimentech, potvrzených a rozšířených G r a l h e e r e m a F i s c h e r r o v u (12), je virus z měši suspense po řadu hodin stejně infekční v rozmezí pH od 2,5 do 13. A r m b r u s t e r a Z i m m e r m a n n (13) dokonce zjistili, že i virus z tkáňové kultury při 40°C neztrácí mezi pH 2,8 až 9,5 nic ze své infektivity. Je pochopitelné, že termická inaktivace viru z tkáňových kultur probíhá jinak než za použití měšní suspenze, přičemž podle některých údajů pokles titru při nepříliš vysokých temperaturách je nejdříve zakryt desagregací větších virových partikulí. Nízké temperature konzervují dokonale virus infekční obry ať v měši nebo v tekutině tkáňových kultur, přičemž se jeho infekční titr po léta nemění. Oxydační antiseptika a chlór jsou stejně účinnými desinficígenti jako při lidské polio. Rivanol na Kloboukův virus neúčinkuje.

Účinek formalinu zředěného v rozmezí 1:2500 až 4000 při pH přibližně 7-7,3 a temperatuře 37°C po dobu 40-72 hodin na viry polio i virus Kloboukův z TK je téměř úplně stejný. Dochází ke ztrátě infekciozity při zachované antigenicitě u obou virů.

Soudbě podle prokázaného intestinálního vylučování jak virů polio, tak virus infekční obry a u polio také podle možnosti paralytické infekce cestou stomachální, jsou tyto viry vysoce rezistentní jak vůči zaživací enzymům makroorgánu, tak i metabolitům intestinálních bakterií.

Pakliže považuji Koprůského nález polio I ve stolici skotu za věc zcela výjimečnou a dosud nepotvrzenou (podobně jako opětovaný nález neutralizačních protilátek proti polio I a II v sérech hovězího dobytka), je jisto, že hlavním rezervórem a šířitelem poliozických virů v přírodě je člověk. Průkaz virů polio v insektech, připadně i v hlodavcích, souvisí vždy s epidemií a znamená pouze mechanickou pasáž v téle. Experimentálně lze tyto virusy adaptovat prakticky všemi inokulačními cestami na různé druhy opic, z nichž jednou z nejč. livějších je Macacca cynomolagus, jehož se podařilo infikovat instilaci virus přímo do žaludku, přičemž infekce nejpodobnější přirozeně lidské lze vyvolat ingessí virus u šimpanze, jehož dolní část zaživacího traktu se ovšem na rozdíl od člověka vyznačuje velkou rezistentí. Typ II jak známo byl již dávno adaptován na hladovce, což se s typem I a III rovněž dodatečně podařilo, ale jen jako experimentální výjimka.

Virus Kloboukovy nemoci je — jak se zdá — po této stránce ještě podstatně specifickější, neboť pokud je nám známo, je vepř a jemu příbuzně druhy dosud jediným přirozeným hostitelem virus i experimentálně citlivým zvířetem.

Již jen uvedeno, mohou být opice pokusně infikovány prakticky jakoukoliv cestou, přičemž mezi nejnadsáhniší patří instilace intranasální, ale již mnohem účinnější jsou inokulace bithalamicí a intraspinalní.

Titry poliovirů v experimentálně infikovaných opicích i hlodavcích jsou zjmena při primoinokulacích relativně nízké (to platí i pro tkáň měšní, obsahující nejvíce virus, neboť kolísají obvykle v koncentracích suspenze 10-3 - 10-4,5, zřídka dosahují vyšších hodnot.

Infikovat vepře Kloboukovov obrnou je možno pravidelně intranasálně a vždy intrathalamicí. Infekce subkutální, intramuskulární, intraperitoneální
a intravenozní vedou při použití místních suspenzí vzácně k paralytické infekci, při použití viru z kultur o něco častěji. Ingesci většich kvant viru vzniká choroba pravidelně, ale i zde je pravděpodobně o průnik přes horní části zaživačního traktu, snad orofarynx, neboť Koštanskému ani nám se nepodařilo nadměrnými kvanty infekčních místních suspenzí vyvolat symptomatologii a dokonce ani imunitu insti-
lací přímo do žaludku po neutralizaci jeho obsahu. Nejnověji jsme poslední pokus opakovali virem z tkánových kultur, kde ani 10 miliónů dávek infekčních pro tkání nevedlo k příznakům. Zdá se tedy, že dolní část zaživačního traktu vepře je pro virus infekční obrny stejně málo citlivá jako týž trakt šimpanzů pro víry polio.

Infekční titry v michách u přirozeně nebo experimentálně infikovaných vepřů (zejména pokud jsou neadapováno) kol. sají v podobných rozměrech jako u polio, tj. od 10^{-2.8} – 10^{-4}. Výjimkou byly zjištěny primární titry 10^{-5}.

Rozprostření viru, jak polio, tak Kloboukovy nemoci v různých částech centrálního nervstva je potud stejné, že v obojím případě se jej nejvíce nachází v mísce. Při prolongovaném trvání paralyse virus v CNS poměrně rychle mízí, ačkoliv i zde B u c k (14) nalezl výjimku v perzistenci víru v mísce 10^{-2} po 12 denním trvání paralyse.

Množení poliovirů v kuřecím embryu se dlouho zdálo nemožné, až konečně bylo dosaženo u typu II jako experimentální zvláštnost za použití cortisonu nebo víru, jenž prodělal velkou řadu pasáží syrským křečkem.

Kultivace víru Kloboukovy obrny za tých podmínek je většinou rovně neúspěšná, u některých kmenů jej však pozoroval Ha r n a c h a B r a u n e r.

Slavnou kapitolou mikrobiologie je množení poliomyelitických vírů na tká-
ňových kulturách s výsledným cytopatogenním fenomenem podle principu za-
vedeného E n d e r s e m a spolupracovníky a propracovaného do nejjemnějších detailů již v podstatě D u l b e c c e m a V o g t e m, s možností neutralizace cytopatogenního efektu specifickými protititikami.

Tím byla dána metoda produkce velkých kvant víru v relativně čisté formě k účelům rešeršním, k produkci vakcin a konečně k detekci pro. ilátek, jež jsou specifickým svědectvím proběhle choroby klinicky patrné nebo inaparentní či konečně jsou schopny kvantitativně vyjádřit stav chorobou nebo očkováním vzniklé imu-
nity. Běžně se používá trypsinizovaných ledvin opicích, ale i stabilních linií lid-
ských a v novější době také králičích. Rozcházejí se zprávy o výsledcích na ledvi-
nách vepřových.

Principu tkáňových kultur pro množení Kloboukova víru první nesporně použil L a r s k i (15) s pozoruhodným úspěchem. Trypsinizovaných epitheliál-
ních buněk z cizuckých vepřových ledvin jsme využili my (16) a M a y r a S c h w ö b e l (17), kteří s dalšími spolupracovníky prostudovali řadu základ-
ních biologických vlastností tkáňového víru. O něco později dosáhli téhož autoři francouzští, angličtí, maďařští aj. Cytopatogenní fenomen probíhá dosti podobně jako u lidské polio ve 2 fázích, výsledný titr víru dosahovaný v naší laboratoři je přibližně stejný jako u autorů německých, tj. rovná se 10^{-7} – 10^{-8} TCID_{50} na 1 ml. Tyto hodnoty jsou opět velmi blízké onem, jichž se dosahuje u virů lidské polio. Adaptaci na tkáň stoupá určitou řadu pasáží titr víru. Po dlouhé řadě pasáží však klesá (patrně selekce avirulentních mutant) při zachované antigenicitě patogenita víru pro zvíře k nule. Mayr dosáhl avirulentní linie po 91. pasáži, my za standard-
ního používání stabilní linie vepřových ledviných buněk (P K) jsme získávali vírus analogických vlastností po 78. pasáži. Zdá se, že odraz jedinečně specifické adap-
tovanosti Kloboukova viru na tepře lze nalézt i při jeho kultivaci na tkáni, neboť dosud nemáme zpráv o tom, že by bylo možno tento virus s cytopatogenním efektem množit na jiných kulturách než homologních.

Není naším úkolem a nejsme ani k tomu kvalifikováni, abychom rozebírali podrobnosti a rozdílnosti v histologickém obrazu lidské poliové vronění s infekční obrnou nepřítelů. Větší extenzita změn než u Kloboukovy nemoci a jejich jemný histologický korelát jsou dostatečně známy.

Jak obecně známo, vyskytuje se lidská poliová vronění v třech v neutralizačním testu zcela rozdílných antigenních typech, mezi nimiž však částečně při aktivní imunizaci živým virem, zejména za použití komplementfixace, lze vystopovat jemné zkrácení reakace, a to zejména mezi typem I a II. Neutralizační test, spočívající v inhibici cytopatogenního efektu, je obecně používaným detektorem chorobného stavu, buď klinicky patrného nebo inaparentního, či konečného stavu specifické a dlouhodobé imunity. Téměř paralelně byla propracována velmi jemná komplementfixační reakce, hodnotící u poliové akutní stav probíhajícího onemocnění. Neutralizační protitělesy jsou vázány prakticky na gammaglobulinofofrakci séra, jejich dostatečně vysoký titr zaručuje ochranu makroorganismu před invazi CNS při viremické fázi a vstřiknutí příměřených kvant krátkodobou pasivní ochranu. Později než neutralizační test byly objeveny i protitělesy, precipitující koncentrovány virus a jimi byla doplněna jemná sérová diagnostika choroby.

Detece neutralizačních protitěles Kloboukovy obrny — podobně jako kdyby u poliové byla realizována námi a jinými autory poměrně nedokonale pokusem na zvířeti. Dnes je situace i po této stráně naprosto stejná jako u obrny lidské, protitělesy se titrují na tkáňové kultuře, rozpoznává se kromě absoluční výše jejich dynamika v průběhu onemocnění, případně rekonzercence. Lze jejich tedy použít nejen k potvrzení diagnózy klinicky patrné choroby, nýbrž i k odkrytí nepoměrně častějších případů inaparentních infekcí (které Mayr rozděluje na 2 skupiny podle pravděpodobné patogenezy) a konečně i k ohodnocení stavu vakcinaci získané imunity. O třech, které Mayr pokládá za pravděpodobné od zředění séra 1 : 30 a jisté od ředění 1 : 60 proti 1000 ITCD viru a jejich rozprostření bude referováno v dalších sděleních tohoto sjezdu. Němečtí autoři poprvé použili důkazu chorobného stavu protitělesami precipitárními (18), které analogicky s lidskou poliovou nástupují později, dosahují nižších titrů a dělí vymizí. Až do nedávné doby nebylo u Kloboukovy nemoci využito protitěles komplementfixačních, jejichž důkaz se nedávno nesporne pro zvážení charakter séra nepřítelů. Pokusíme se ukázat v jiném referátě, že i tyto u nemocných nebo imunizovaných zvířat existují, i když se zatím nemůžeme vyslovit o jejich praktické využitelnosti jako testu kvantitativního; nevylučujeme však, že jejich průkaz může posloužit jako test vyhodnocení. Není tedy dnes zásadního rozdílu v typu specifických sérových protitěles, jak byl dosud zjištěn v chorobě, vyvolaných poliovými či u onemocnění vyvolaného virem Kloboukovým. Zásadní rozdíl mezi oběma viry však spočívá v tom, že u klasickeho Kloboukovy choroby, perzistující ve střední a jižní Evropě, existuje pouze jediný antigenický typ viru. O identitu nebo příbuznosti viru T a l f a n s virem Kloboukovy obrny se zatím nemůžeme vyslovit. Přítom Kloboukův virus je antigenně zcela odlišný od virů poliové, neboť jak se zdá, všechny dosavadní názvky o dílčí zkráceném imunitě zůstaly nepotvrzeny nebo byly vyvráceny. Pasivní ochrana proti viru Kloboukovy obrny specifickým gamaglobulinem (hyperimmunizace mládí i dospělé) se nám dosud nezdařila. Bude však nutno tento experiment opakovat s novými a hodnotnějšími preparáty.

Úspěchy aktivní imunizace proti lidské poliové vakcinou S a l k o v a typu jsou dostatečně známé. Svět stojí před konečným hodnocením efektu živé aviru-
lentní vakciny typu S a b i n o v a, k níž byly použity víry, množící se v zaživačném traktu, ale nesporně neschopné viremické fáze. Již dnes se zdá, že problematika paralytické polio bude touto druhou vakcinou definitivně vyřešena.

Přes skvělé rezultáty dosažené v poznání biologických vlastností víru lidské obrny, její imunogenese, specifické diagnostiky i úspěchy aktivní imunizace nelze říci, že by patogeneze lidské polio byla dokonale probádána. Převládajícími koncepty jsou jednou Bodianova, jednak Faberova, kteréžto obě se Sabin vynasnil i spojit v jednu obecně platnou. První z domněnek povzpůz cheuza za primární sídlo mno- žení víru tonsilly a lymfatické folliculy střevnom ho traktu, kdežto druhá spíše nervová ganglia orofaryngu, snad i střevního traktu. Obě se však shodují v tom, že s vý- jmkou ev. přímé neuronové pasáže pokládají víremi za nejčastější příčinu průniku víru do CNS. Inaparentní formy se vykládají fázi buď meně; enterálního nebo event. i ganglionárního množení víru bez viremí tak efektivní, aby z ní mohl být infikován CNS. Inaparentní formy by prokázány a jejich počet je zjevně mnohem vyšší než paralytických chorob. Exkrece víru orofaryngem je krátkodobá, intestinální dlouhodobá, viremické stadium opětované zjištěno experimentem.

Pro virus Kloboukův a chorobu jím vyvolanou se prozatím na základě dílčích údajů, z nichž nejpracovnější jsou pokusy F is c h e r o v é a R ö h r e r o v y (20) a zejména na tkáňových kulturách H e c k e m (21) podané důkazy, předpokládá zhruba platnost domněnek analogické s Bodianovou. Pro zvláštní způsob přijímání počátečních nevylučuje se také relativně častejší možnost výskytu víru z nosu přes bulbus olfactorius přímo do CNS. V tomto posledním případě může dojít k paralytické infekci samozřejmě bez viremie. H e c k e dokázal kultivací po perorální infekci víru nejdríve v tonzilách a v tlustém střevě, prakticky téměř současně v lymfatických uzelnicích hrtanových, o něco později i mesenteriálních a u několika zvířat i v uzlinách jaterních, ledvinových a diafragmatických. V prodloužené míse byl dokázán 8. dne, po 14 dnech ve velkém mozku. Viremii našli někteří naši autoři, H o r s t m a n n o v á (5) a F i s c h e r o v á (22), po krátkou dobu v preparalytickém období. Na rozdíl od lidské polio je však důkaz viremie podávan jen velmi vzácně a u přirozeně probíhající infekce pokud víme - vůbec nikdy. V preparalytické fázi a při nástupu paraly je možné zjistit vámování víru nasofaryngeální sliznice. O něco později — shodně s několika nášimi i cizími autory — i stolici. Vcelku však ani intestinální eliminace víru není dokázána tak pravidelně a dlouhodobě existující jako u humánního obrového onemocnění. Chemickou blokadou orální a nosní sliznice je možné ophakovaných po-
kusech dokázali zabránit klinické infekci po intranazální instalaci. Jak již výše uvedeno, jiným i nám se ukázal intrastomachální způsob infekce neúčinný. Představujeme si tedy, že na rozdíl od lidské polio je většina paralytických nákaz důsledkem množení viru hlavně v proximální části zažívacího traktu, dále že viru není vždy nutnou podmínkou paralytických infekcí a konečně vzhledem k relativní rezistenci dolní části zažívacího traktu, že ani dlouhodobá eliminace viru stolici není vždy nutným doprovodem přirozené infekce. Ze všeho je jasno, že podrobnosti patogenezy Klobookouky choroby nutno ještě do hlubky propracovat a prozatím zjištěná dělá fakta skloubit v úplný obraz. O důležitosti tohoto studia pro epidemiologii choroby, a to zejména jejích inaparentních forem a samozřejmě také vakcinace, není nejenmenši pochybnosti. Prozatím jsme přesvědčení, jak také na jiném místě dokládáme, že četná z našich stád jsou latentním promořením pravidelně proimunizovávána. Pokud se vakciny týče, z toho, co dosud víme o patogeneze, by vyplývalo, že nejúčinnějším aktivně imunizačním prostředkem bude ochování virem živým, mitigovaným, a to pro všechny typy vzniku infekce.

Veříme, že jsme při objektivním zhodnocení všech dílčích rozdílností snesli tolik důkazů o analogích až nápadných viru Klobookova a lidských polio, že se nám jasně rýsuje jejich blízká příbuznost. To také odpovídá koncepci K o p r o w s k é h o a zejména Ž d a n o v é, kteří s přídáním virů T h e i l e r o v é vychválili z těchto 3 skupin virů zvláštní, od ostatních odlišenou kategorii. Dnes je ovšem taxonomická situace mnohem komplikovanější. V ordo V ir a l e s je jedním z tribus tzv. Paroviriae. V tomto posledním figuruje důležitý rod tzv. Enterovirů, který posuzovan z hlediska humánní mikrobiologie zahrnuje v sobě 3 základní skupiny, z nichž první jsou viry lidské polio, druhou Coxsackie a třetí vždy cytopatogenní, ale jen ojediněle a ještě k tomu méně sympatomatologie vyvolávající Echo-viry. Dnes se jeví, že dle těchto naléhavějších rozdělit rod Enterovirů o desítky již mezitím izolovaných a zatím ještě přesně neurčených kmenů zvířecích Chovirů, jejichž velké kvantum již tato, to je tím ojediněle velkého ECHO virů (23). Vzhled těchto posledních k případným méně sympatomatickou typy u nepřirozeného narušení tím mé nětějších vztahy k jiným zvířecím i lidským Enterovirům je zatím důsledně prostudováno. Jedno se však již rýsuje s velikou pravděpodobností: ECHO-Enteroviry — na rozdíl od lidských — mají prozatím jen 2 základní skupiny, z nich je první, Klobookův virus, je naprostým analogem první skupiny lidské, tj. poliomelytidy. Analogy skupiny Coxsackie prozatím nebylo již zjištěno (typ 5, skupina A, nalezen u vepře). Konečně poslední skupiny třetí (ECHO) je pod názvem ECO viry studováno na více než 100 různých kmenech, jejichž biologický význam a účinek zatím zůstává záhadou.

Souhrn

Přednáška rekapituluje a některými novými údaji vlastními i cizími doplňuje již dříve publikované sdělení autorů o podrobnostech i event. rozdílech mezi virem KO a viry lidské poliomelytidy.

Podrobnosti lze nalézt:

1. ve velikosti a do značné míry i v tvaru virů,
2. v rezistenci virů na étér, temperaturu, antiseptika a in vivo působení enzymů zažívacího traktu,
3. v odolnosti virů na působení nevykleně širokých rozmezí pH po velmi dlouhou dobu,
4. v citlivosti viru na lyofilizační proceduru,
5. v téměř absolutní neschopnosti virů aglutinovat savců a některé ptačí erythrocyty,
6. ve velmi omezené možnosti přenosu virů na experimentální zvíře, pokud se týče jeho schopnosti vyvolat paralytické onemocnění,
7. v podobnosti histologického obrazu v předních místních rozích, zejména při přirozené infekci,
8. v relativně nízkých titrech viru v CNS při přirozené i experimentální infekci,
9. v obtížnosti množení virů v kuřecím embryu,
10. ve schopnosti vydatného množení virů na homologní epitheliální tkáň s projevem cytopatogenního efektu neutralizovatelného specifickými protilátkami,
11. v možnosti úspěšné imunizace formalinem a beta-propiolaktonem inaktivovaným virem a jak se ukazuje i živým avirulentním virem,
12. v některých, dosud známých rychlosti patogenezy choroby, zejména v průběhu oropharyngeálního a intestinálního vylučování obou virů (i když poslední situace, podobně jako viremie, byla zjištěna u vepřové obrny jen výjimečně).

Uvedená data byla získána jednak experimenty s virem přímo získaným z CNS, jednak s virem z tkáňových kultur.

Autoři dále dovozují, že mezi oběma viry jsou i podstatné rozdíly, které se týkají zejména antigenicity, sérologické průkaznosti, některých imunologických vlastností, jakož i adaptability virů. Přes tyto difference však autoři uzavírají, že virus KO, podobně jako virus Theilerův, může být řazen mezi enterviry, které jsou vzdáleně od běžných ECHO, ECV, ECS, ECM a Coxsackie, ale tvoří relativní uzavřenou skupinu virů, biologicky analogických virům poliomyelitickým.

Literatura

Základní práce akademika Klobouka a jeho spolupracovníků, předcházející práce autorů samých a většina prací do r. 1958, je publikována v bibliografii článku: Patočka Fr., Kubelka Vl., Korych B. — HEMI 1959, 3, 1 na něž zde odkazujeme.

Вирус болезни Клобоука и человеческого полиомиелита как энтеровирусы

Доклад обобщает и пополняет некоторыми новыми отечественными и зарубежными данными уже ранее опубликованные сообщения авторов о сходстве и возможных различиях между вирусом болезни Клобоука и вирусом человеческого полиомиелита.

Сходства наблюдаются:
1. в размерах, а в некоторой степени в форме вирусов,
2. в устойчивости вирусов к эфиру, температуре, антисептическим средствам и in vivo к действию энзимов пищеварительного аппарата,
3. в устойчивости вирусов к воздействию необычно широкого диапазона pH в течение длительного срока,
4. в чувствительности вируса к лиофилизационной обработке,
5. в почти абсолютной неспособности вирусов агглютинировать эритроциты млекопитающих и некоторые эритроциты птиц,
6. в весьма ограниченной возможности перенесения вирусов на экспериментальное животное, поскольку речь идет о его способности вызывать параличическое заболевание,
7. в схожести гистологической картины в передних углах спинного мозга, особенно при естественном заражении,
8. в относительно низких титрах вируса в ЦНС (центральной нервной системе) при естественной и экспериментальной инфекциях,
9. в затруднениях при размножении вируса на куриных эмбрионах,
10. в способности обильного размножения вирусов гомологической эпителиальной ткани с проявлением цитопатогенного эффекта, нейтрализуемого специфическими антителами,
11. в возможности успешной иммунизации формалином и бета-пропиолактоном и, как оказалось, живым невирулентным вирусом,
12. в некоторых до сих пор известных процессах патогенеза болезни, особенно в достоверности орофарингеального и интестинального выделения обоих вирусов (несмотря на то, что последнее положение, как и виреемия, было определено у энцефаломиелита свиней только в исключительных случаях).

Приведенные данные были получены как путем экспериментов с вирусом, непосредственно полученным из ЦНС, так и с вирусом из тканевых культур.

Далее авторы приводят, что между обоими вирусами имеются существенные различия, касающиеся главным образом антигенных, серологической достоверности, некоторых иммунологических свойств, а также способности вируса к адаптированию. Несмотря на эти особенности, однако авторы приходят к заключению, что вирус болезни Клюбока, аналогично вирусу Тейлора, может быть включен в число вирусов, которые отличны от обычных ECHO, ECBO, ECHO, ECBO и Coxackie, но образуют относительно замкнутую группу вирусов биологически аналогичных полимикелитическим вирусам.

Das Virus der Klobouk'schen Schweinellähmung und der menschlichen Poliomyelitis als Enteroviren

Ähnlichkeiten sind zu finden:
1. in der Größe und in bedeutendem Ausmaße auch in der Gestalt der Viren,
2. in der Resistenz der Viren gegenüber Äther, Temperatur, Antisepticus und in vivo die Wirkung der Verdaunungenzyme,
3. in der Widerstandsfähigkeit der Viren gegenüber der Wirkung ungewöhnlich weiter pH Grenzen während sehr langer Zeitdauer,
4. in der Empfindlichkeit der Viren auf Lyophilisationsprozeduren,
5. in fast absoluter Unfähigkeit der Viren Säuger- und einige Vogelerythrozyten zu agglutinieren,
6. in der stark begrenzten Möglichkeit der Übertragung der Viren auf Versuchstiere im Hinblick auf die Fähigkeit paralytische Erkrankungen auszulösen,
7. in der Ähnlichkeit des histologischen Bildes in den vorderen Rückenmarkshörnern, insbesondere bei natürlicher Infektion,
8. in relativ niedrigen Titern des Virus im ZNS bei natürlicher und experimenteller Infektion,
9. in der Schwierigkeit die Viren auf Hühnerembryonen zu züchten,
10. in der Fähigkeit ausreichender Vermehrung auf homologen Epithelgeweben mit zytopathogenem Effekt, der durch spezifische Antikörper neutralisierbar ist,
11. in der Möglichkeit erfolgreicher Immunisation mittels Virus, das durch Formalin und Betapropionlakton inaktiviert worden war, und, wie sich zeigt, auch mittels lebendem, avirulentem Virus,
12. in einigen bisher bekannten Besonderheiten der Pathogenese, besonders im Nachweis oropharyngealer und intestinaler Ausscheidung beider Viren (wenn auch die letzte Situation, ähnlich wie die Virämie, bei der Schweinellähmung nur ausnahmsweise gefunden wurde).
Diese Angaben wurden ermittelt an Hand von Experimenten mit direkt aus dem ZNS gewonnenem Virus und ebenso mit Virus aus Gewebeskulturen.

Die Autoren führen weiters aus, daß zwischen beiden Viren auch grundsätzliche Unterschiede bestehen, die sich hauptsächlich auf die Antigenizität, serologische Nachweisbarkeit und immunologische Eigenschaften beziehen. Trotz dieser Differenzen schließen jedoch die Autoren, daß das Virus der KS, ähnlich wie das Theiler’sche Virus, unter die Enteroviren eingereiht werden kann, die von den üblichen ECHO, ECBO, ECSO, ECMO Virusarten sowie vom Coxsackie-Virus entfernt sind, aber eine relativ abgeschlossene Gruppe von biologisch analogen, poliomyelitischen Virusarten bilden.